C37	$0.1403(2)$	$0.1567(4)$	$0.7923(5)$	$0.076(3)$
C38	$0.11 .37(2)$	$0.1615(3)$	$0.6912(5)$	$0.056(2)$
C39	$0.0779(2)$	$0.1279(4)$	$0.6770(5)$	$0.067(2)$
C110	$0.0797(2)$	$0.4912(4)$	$0.5359(6)$	$0.068(2)$
C111	$0.08782(14)$	$0.4093(3)$	$0.5108(5)$	$0.0559(19)$
C113	$0.14287(13)$	$0.4324(3)$	$0.2980(5)$	$0.053(2)$
C114	$0.12153(13)$	$0.4548(3)$	$0.3800(5)$	$0.0548(19)$
C210	$0.02496(14)$	$0.3242(4)$	$0.1181(5)$	$0.065(2)$
C211	$0.05037(1.3)$	$0.3280(3)$	$0.2204(5)$	$0.0540(19)$
C213	$0.10899(13)$	$0.1530(3)$	$0.1998(4)$	$0.0472(17)$
C214	$0.07970(13)$	$0.2111(3)$	$0.1710(4)$	$0.0467(17)$
C310	$0.05507(15)$	$0.1343(3)$	$0.5752(5)$	$0.0585(19)$
C311	$0.06647(12)$	$0.1755(3)$	$0.4860(5)$	$0.0499(19)$
C313	$0.15942(12)$	$0.2326(3)$	$0.6039(4)$	$0.0442(16)$
C314	$0.12353(13)$	$0.2005(3)$	$0.5975(4)$	$0.0438(17)$
P1	0	$0.03919(11)$	$1 / 4$	$0 .(0455(6)$
F11	$0.04360(8)$	$0.0391(2)$	$0.2846(3)$	$0.0724(14)$
F12	$-0.00296(10)$	$0.0390(2)$	$0.3785(3)$	$0 .(1791(16)$
F13	0	$0.1389(2)$	$1 / 4$	$0.0677(18)$
F14	0	$-0.0606(2)$	$1 / 4$	$0.0668(18)$
P2	0	$0.5851(2)$	$1 / 4$	$0.0786(10)$
F21	$0.0309(2)$	$0.5179(3)$	$0.2664(5)$	$0.151(3)$
F22	$0.0297(2)$	$0.6519(4)$	$0.2754(7)$	$0.196(4)$
F23	$0.0002(2)$	$0.5841(4)$	$0.3789(5)$	$0.165(3)$
P3	$0.24086(5)$	$0.0400(2)$	$0.0536(2)$	$0.1000(9)$
F31	$0.24495(13)$	$0.0426(4)$	$0.1833(4)$	$0.133(2)$
F32	$0.27711(14)$	$-0.0087(4)$	$0.0608(5)$	$0.148(3)$
F33	$0.2157(2)$	$-0.0320(6)$	$0.0502(7)$	$0.233(5)$
F34	$0.23781(13)$	$0.0428(6)$	$-0.0761(4)$	$0.216(5)$
F35	$0.2063(2)$	$0.0939(7)$	$0.0440(7)$	$0.278(6)$
F36	$0.2658(2)$	$0.1198(5)$	$0.0579(7)$	$0.209(4)$

Table 2. Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$

$\mathrm{Ru}-\mathrm{N} 11$	$2.06!(5)$	$\mathrm{Ru}-\mathrm{N} 112$	$2.067(4)$
$\mathrm{Ru}-\mathrm{N} 21$	$2.063(5)$	$\mathrm{Ru}-\mathrm{N} 212$	$2.064(4)$
$\mathrm{Ru}-\mathrm{N} 31$	$2.056(4)$	$\mathrm{Ru}-\mathrm{N} 312$	$2.068(4)$
$\mathrm{N} 11-\mathrm{Ru}-\mathrm{N} 112$	$8(0.38(17)$	$\mathrm{N} 31-\mathrm{Ru}-\mathrm{N} 312$	$79.62(15)$
$\mathrm{N} 21-\mathrm{Ru}-\mathrm{N} 212$	$79.47(17)$		

H atoms were placed in calculated ideal positions and refined using a riding model, each with an isotropic displacement parameter set to 1.2 times the equivalent isotropic displacement parameter of the atom to which it is attached.

Program(s) used to solve structure: SIR92 (Altomare, Cascarano, Giacovazzo \& Guagliardi, 1993). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: PLATON (Spek, 1990), INSIGHTII (Biosym Technologies, 1993). Software used to prepare material for publication: PLATON.

We thank Professor Dr K.-J. Range for making equipment available, and the Fonds der Chemischen Industrie for generous financial support.

[^0]
References

Allen, F. H., Kennard, O. \& Taylor, R. (1983). Acc. Chem. Res. 16, 146-153.
Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Crvst. 26, 343-350.

Anderson, P. O. (1973). J. Chem. Soc. Dalton Trans. pp. 1237-1241. Biosym Technologies (1993). INSIGHTII. Biosym Technologies, San Diego, USA.

Boys, D., Escobar, C. \& Wittke, O. (1984). Acta Cryst. C40, 13591362.

Breu, J. \& Catlow, C. R. A. (1995). Inorg. Chem. 34, 4504-4510.
Breu, J. \& Range, K.-J. (1994). Monatsh. Chem. 125, I53-165.
Goodwin, H. A., Kepert, D. L., Patrick. J. M., Skelton, B. W. \& White, A. H. (1984). Aust. J. Chem. 37, 1817-1824.
Jorgensen, W. L. \& Severance, D. L. (1990). J. Am. Chem. Soc. 112, 4768-4774.
Kahn, M. M. T., Bhardwaj, R. C. \& Bhardwaj, C. (1990). Polyhedron, 9. 1243-1248.

Koh, L. L., Xu, Y., Hsieh, A. K., Song, B., Wu, F. \& Ji, L. (1994). Acta Cryst. C50, 884-886.
Kuroda, R., Mason, S. F., Rodger, C. D. \& Seal, R. H. (1981). Mol. Phys. 19, 131-136.
Rillema. D. P., Jones. D. S., Woods, C. \& Levy, H. A. (1992). Inorg. Chem. 31, 2935-2938.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Spek. A. L. (1990). Acta Cryst. A46, C-34.
Yersin, H., Huber, P. \& Wiedenhofer. H. (1994). Coord. Chem. Rev. 132. 35-42.

Acta Cryst. (1996). C52, 1177-1180

Structures of Chromium(III) Cyclam
 Complexes. 6. trans-Aquahydroxy (1,4,8,11tetraazacyclotetradecane)chromium(III) Dibromide Hydrate

Rex A. Palmer, ${ }^{a}$ Brian S. Potter, ${ }^{a}$ Sevim Tanriverdi, ${ }^{a}$ John N. Lisgarten, ${ }^{b}$ Colin D. Flint ${ }^{c}$ and D. Majaha Gazl ${ }^{-}$

${ }^{a}$ Department of Crystallography, Birkbeck College, University of London, Malet Street, London WCIE 7HX, England, ${ }^{b}$ Department of Ultrastructure, Instituut voor Molekulaire Biologie, Vrije Universiteit Brussel, Paardenstraat 65, B-I640 Sint-Genesius Rode, Belgium, and 'Department of Chemistry, Birkbeck College, University of London, Malet Street, London WCIE 7HX, England

(Received 22 December 1993; accepted 18 September 1995)

Abstract

The X-ray analysis of the title compound, $[\mathrm{Cr}(\mathrm{OH})$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{~N}_{4}\right)\right] \mathrm{Br}_{2} . \mathrm{H}_{2} \mathrm{O}$, indicates that the cyclam moiety exists in a chair conformation. The trans-axial O atoms bonded to Cr both carry one well defined H atom, with each oxygen also bearing a partially occupied $(50 \%) \mathrm{H}$ atom. The $\mathrm{O}-\mathrm{Cr}-\mathrm{O}$ bond angle is almost linear $\left[179.6(1)^{\circ}\right]$ and the $\mathrm{O} \cdots \mathrm{O}$ vector is tilted by $1.2(2)^{\circ}$ from the perpendicular to the CrN_{4} plane.

Comment

The title compound, (I), is one of a series of salts of the complex ion trans $-\left[\mathrm{Cr}(\text { cyclam }) X_{2}\right]^{+}$, where cy-
clam $=1,4,8,11$-tetraazacyclotetradecane. Cyclam is a quadridentate cyclic ligand providing essentially a stable four-donor-atom plane enabling kinetic, photochemical and spectroscopic evaluation of the X_{2} ligand to be carried out. When the effective crystal field is assumed to be $D_{4 h}$ the spectra can be described by the parameters D_{q}, D_{s} and D_{t}, enabling the crystal field theory to be tested. In principle, tetraaza cyclic ligands present a simpler model for the more complex, naturally occurring porphyrins. Classical examples of porphyrin complexes are those containing manganese prepared and studied by Zaleski (1904) and Taylor (1940). We present the structure of the pink derivative trans$\left[\mathrm{Cr}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)(\right.$ cyclam $\left.)\right] \mathrm{Br}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ as part of our investigation into the roles of exact site symmetry and the field due to neighbouring counterions in determining the form of the electronic spectra of these compounds.

The cyclam moiety provides a tetradentate N -donor ligand, forming with the two axial O atoms an octahedrally coordinated Cr atom (Fig 1). The $\mathrm{Cr}-\mathrm{N}$ distances have a mean value of 2.064 (3) \AA, which is in agreement with those found in other members of this series, including the dicyano complex (Hemmings, Lisgarten, Palmer \& Gazi, 1989), the dibromo complex (Lisgarten, Palmer, Hemmings \& Gazi, 1990), the dichloro complex (Dealwis, Janes, Palmer, Lisgarten, Maes \& Gazi, 1992), the bromo-chloro complex (Chattopadhyay, Palmer, Lisgarten, Wyns \& Gazi, 1992) and the dichloro complex (Bouckaert, Maes, Lisgarten, Chattopadhyay, Palmer, Mazid \& Gazi, 1993), as well as in related compounds such as trans-amminebis(ethylenediamine)fluorochromium(III) perchlorate (Beveridge, Bushnell \& Kirk, 1985). The cyclam ring has geometry similar to that observed in many examples and displays almost perfect non-crystallographic conformational symmetry, $\Delta C_{2}=1.4^{\circ}$ (Duax \& Norton, 1975). The least-squaresplanes equation for the Cr^{3+} ion and the four N atoms is $0.9674 x^{\prime}+0.0246 y^{\prime}+0.2521 z^{\prime}=6.0106$, where x^{\prime}, y^{\prime} and z^{\prime} are the coordinates in \AA with respect to orthonormal axes (Rollett, 1965). These equatorial ligands and the central Cr ion are coplanar with an r.m.s. deviation of $0.0091 \AA$. The bond lengths and angles conform within close limits to values quoted for similar compounds. The $\mathrm{O}(1) \cdots \mathrm{O}(2)$ axial vector is tilted by $1.2(2)^{\circ}$ from the perpendicular to the CrN_{4} plane.

Fig. 1. View of the asymmetric unit perpendicular to the least-squares plane through all atoms. Displacement ellipsoids are plotted at the 50% probability level. The half-occupancy H atoms are indicated by an asterisk.

Fig. 2. Packing diagram viewed along ao.

Experimental

Crystals were obtained by slow evaporation from aqueous solution.

Crystal data

$\left[\mathrm{Cr}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{~N}_{4}\right)\right]-$ $\mathrm{Br}_{2} . \mathrm{H}_{2} \mathrm{O}$
$M_{r}=465.2$
Orthorhombic
Pcab
$a=12.049$ (3) \AA
$b=17.018$ (3) \AA
$c=17.071$ (3) \AA
$V=3500.4 \AA^{3}$
$Z=8$
$D_{x}=1.765 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Enraf-Nonius CAD-4
diffractometer
$\mathrm{Cu} K \alpha$ radiation
$\lambda=1.54178 \AA$
Cell parameters from 25 reflections
$\theta=20-25^{\circ}$
$\mu=10.838 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Tabular
$0.4 \times 0.3 \times 0.2 \mathrm{~mm}$
Pink
$R_{\text {int }}=0.0325$
$\theta_{\text {max }}=73^{\circ}$

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

	$U_{\mathrm{eq}}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.			
	x	y	z	$U_{\text {cq }}$
Brl	0.1434 (1)	0.0988 (1)	0.2263 (1)	0.045 (1)
Br 2	0.5872 (1)	0.3935 (1)	0.5174 (1)	0.051 (1)
Crl	0.3687 (1)	0.2464 (1)	0.3725 (1)	0.025 (1)
Nl	$0.4003(3)$	$0.3187(2)$	0.2784 (2)	0.040) (1)
N2	0.40)12 (3)	0.1555 (2)	0.2955 (2)	0.042 (1)
N3	0.3359 (3)	$0.3366(2)$	$0.4500(2)$	0.037 (1)
N4	0.3372 (3)	0.1740 (2)	0.4669 (2)	0.040 (1)
C7	0.3405 (4)	0.2243 (3)	0.5372 (2)	0.055 (1)
C8	0.2811 (4)	0.3007 (3)	0.5188(2)	0.051 (1)
C9	0.4091 (5)	0.1030 (3)	0.4721 (3)	0.061 (1)
Cl	0.2772 (4)	0.4055 (2)	0.4177 (3)	0.053 (1)
ClI	0.3964 (4)	0.2686 (4)	0.2081 (2)	0.059 (1)
$\mathrm{Cl2}$	$0.3300(5)$	0.3908 (3)	0.2730 (3)	0.057 (1)
C13	0.4547 (4)	0.1914 (3)	0.2262 (2)	0.059 (1)
C14	0.4638 (4)	0.0882 (3)	0.3281 (3)	0.059 (1)
C15	0.3353 (5)	0.4 .389 (3)	0.3465 (4)	0.062 (1)
Cl 6	0.4078 (4)	0.0532 (3)	0.4005 (4)	0.068 (2)
Ol	0.2101 (2)	0.2441 (2)	0.3404 (1)	0.034 (1)
O 2	0.5267 (2)	0.2487 (2)	0.4036 (1)	0.033 (I)
03	0.3637 (4)	$0.4500(3)$	0.6374 (3)	0.084 (1)

Table 2. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Cr} 1-\mathrm{O} 2$	1.977 (3)	N3-C10	1.477 (5)
$\mathrm{Cr} 1-\mathrm{Ol}$	1.988 (3)	N3-C8	1.480 (5)
$\mathrm{Crl}-\mathrm{Ni}$	2.059 (3)	N4-C7	1.474 (6)
$\mathrm{Crl}-\mathrm{N} 3$	2.064 (3)	N4-C9	1.489 (6)
Cri - N 4	2.063 (3)	C7-C8	1.517 (7)
$\mathrm{Crl}-\mathrm{N} 2$	2.068 (3)	C9-C16	1.488 (8)
$\mathrm{N} 1-\mathrm{Cl1}$	1.473 (6)	$\mathrm{Cl} 10-\mathrm{C} 15$	1.513 (8)
$\mathrm{N} 1-\mathrm{C} 12$	1.493 (6)	$\mathrm{C} 11-\mathrm{Cl} 3$	1.521 (8)
N2--C13	1.478 (6)	C12-C15	1.500 (8)
$\mathrm{N} 2-\mathrm{Cl} 4$	1.480 (6)	C14-C16	1.530 (9)
$\mathrm{O} 2-\mathrm{Crl}-\mathrm{O} 1$	179.6 (1)	$\mathrm{C} 13-\mathrm{N} 2-\mathrm{Crl}$	106.4 (3)
$\mathrm{O} 2-\mathrm{Crl}-\mathrm{N} 1$	91.1 (1)	C14-N2-Crl	115.9 (3)
$\mathrm{Ol}-\mathrm{Crl}-\mathrm{N} 1$	88.6 (1)	C10-N3-C8	114.2 (3)
$\mathrm{O} 2-\mathrm{Cr} 1-\mathrm{N} 3$	89.9 (1)	$\mathrm{Cl} 0-\mathrm{N} 3-\mathrm{Crl}$	116.3 (3)
$\mathrm{Ol}-\mathrm{Crl}-\mathrm{N} 3$	90.4 (1)	$\mathrm{C} 8-\mathrm{N} 3-\mathrm{CrI}$	106.7 (2)
$\mathrm{NI}-\mathrm{Cri}-\mathrm{N} 3$	95.2 (1)	$\mathrm{C} 7-\mathrm{N} 4-\mathrm{C} 9$	114.0 (4)
$\mathrm{O} 2-\mathrm{CrI}-\mathrm{N} 4$	88.8 (1)	$\mathrm{C} 7-\mathrm{N} 4-\mathrm{Crl}$	106.6 (3)
$\mathrm{Ol}-\mathrm{CrI}-\mathrm{N} 4$	91.5 (1)	C9-N4-Crl	115.1 (3)
$\mathrm{N} 1-\mathrm{CrI}-\mathrm{N} 4$	179.9 (2)	N4-C7-C8	108.4 (3)

N3-Crl-N4	84.7 (1)	N3-C8-C7	107.9 (3)
$\mathrm{O} 2-\mathrm{Crl}-\mathrm{N} 2$	90.2 (1)	$\mathrm{Cl6-C9-N4}$	114.0 (4)
$\mathrm{Ol}-\mathrm{Cr}-\mathrm{N} 2$	89.6 (1)	N3-Cl0-C15	112.1 (4)
$\mathrm{N} 1-\mathrm{Crl}-\mathrm{N} 2$	85.2 (2)	$\mathrm{N} 1-\mathrm{ClI}-\mathrm{Cl} 3$	108.7 (3)
$\mathrm{N} 3-\mathrm{CrI}-\mathrm{N} 2$	179.6 (1)	$\mathrm{N} 1-\mathrm{Cl2-Cl5}$	111.9 (4)
$\mathrm{N} 4-\mathrm{CrI}-\mathrm{N} 2$	94.8 (2)	$\mathrm{N} 2-\mathrm{C} 13-\mathrm{Cl1}$	108.5 (3)
$\mathrm{Cl1}-\mathrm{Nl}-\mathrm{Cl} 2$	114.1 (4)	N2-C14-C16	112.4 (4)
$\mathrm{Cll}-\mathrm{Nl}-\mathrm{Crl}$	106.4 (3)	$\mathrm{C} 12-\mathrm{C} 15-\mathrm{C} 10$	116.5 (4)
$\mathrm{Cl} 2-\mathrm{NI}-\mathrm{Crl}$	115.7 (3)	C9-C16-C14	115.9 (4)
C13-N2-C14	113.5 (4)		
C9-N4-C7-C8	170.0)(4)	$\mathrm{N} 1-\mathrm{Cl1}-\mathrm{C} 13-\mathrm{N} 2$	56.2 (5)
$\mathrm{C10}-\mathrm{N} 3-\mathrm{C} 8-\mathrm{C} 7$	171.4 (3)	$\mathrm{Cl} 3-\mathrm{N} 2-\mathrm{Cl} 4-\mathrm{Cl} 6$	179.0 (4)
$\mathrm{N} 4-\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 3$	-56.9 (4)	$\mathrm{NI}-\mathrm{Cl2-C15-C10}$	-71.6(6)
$\mathrm{C} 7-\mathrm{N} 4-\mathrm{C} 9-\mathrm{Cl} 6$	-178.7 (4)	N3-C10-C15-C12	71.1 (5)
$\mathrm{C} 8-\mathrm{N} 3-\mathrm{Cl} 0-\mathrm{Cl} 5$	-178.9 (4)	N4-C9-C16-Cl4	69.6 (5)
$\mathrm{Cl2}-\mathrm{NI}-\mathrm{Cl1}-\mathrm{Cl} 3$	-170.4 (4)	$\mathrm{N} 2-\mathrm{C} 14-\mathrm{C} 16-\mathrm{C} 9$	-69.4 (5)
$\mathrm{Cl} 4-\mathrm{N} 2-\mathrm{Cl} 3-\mathrm{ClI}$	$-168.8(3)$		

Preliminary X-ray photographs (Weissenberg and precession) yielded the space group uniquely as $P c a b$ and allowed determination of approximate unit-cell dimensions. The structure was solved by the heavy-atom method, all atoms being located in general positions. The H atoms were fixed geometrically except for H atoms attached to N or $\mathrm{O}: x, y, z$ and U were refined for $\mathrm{H}(11)$ [on $\mathrm{N}(1)$], $\mathrm{H}(21)$ [on $\mathrm{N}(2)$], $\mathrm{H}(31)$ [on $\mathrm{N}(3)$], $\mathrm{H}(41)$ [on $\mathrm{N}(4)$], $\mathrm{H}(1)$ and $\mathrm{H}(15)$ [on $\mathrm{O}(1)$], $\mathrm{H}(2)$ and $\mathrm{H}(25)$ [on $\mathrm{O}(2)$], and $\mathrm{H}(311)$ and $\mathrm{H}(312)$ [on $\mathrm{O}(3)$]. Other H atoms were refined in riding mode with U variable. $\mathrm{H}(15)$ and $\mathrm{H}(25)$ on the axial O atoms were given fixed occupancy factors of 0.5 . The trans-axial O atoms bonded to Cr both carry one well defined H atom, the displacement parameter of which refined to an acceptably low value. Each O atom is also associated with a weaker electron density peak at the correct position to define a second H atom. The displacement parameters associated with these minor peaks refine to acceptable values if fixed site occupancy of 0.5 is assumed. This situation can be modelled in terms of disorder across the two O sites of one hydroxy group and one water molecule. One hydroxy group plus two bromide ions thus balance the $+3 e$ charge on Cr , as required.

Refinement was performed by full-matrix least squares using the SHELXL92 (Sheldrick, 1992) program with anisotropic displacement parameters for all non-H atoms, isotropic for H atoms. Geometrical calculations were also carried out using SHELXL92 and molecular illustrations were prepared using SNOOPI (Karaulov, 1993).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: HUllO5). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

References

Beveridge, K. A., Bushnell, G. W. \& Kirk, A. D. (1985). Acta Cryst. C41, 899-902.
Bouckaert, J., Maes, D., Lisgarten, J. N., Chattopadhyay, T. K., Palmer, R. A., Mazid, M. A. \& Gazi, D. M. (1993). Acta Cryst. C41, 1361-1363.
Chattopadhyay, T. K., Palmer, R. A., Lisgarten, J. N., Wyns, L. \& Gazi, D. M. (1992). Acta Cryst. C48, 1756-1759.
Dealwis, C. G., Janes, R. W., Palmer, R. A., Lisgarten, J. N., Maes, D. \& Gazi, D. M. (1992). Acta Cryst. C48, 1754-1756.

Duax, W. L. \& Norton, D. A. (1975). Atlas of Steroid Structure. New York: Plenum.

Hemmings, A. M., Lisgarten, J. N., Palmer, R. A. \& Gazi, D. M. (1990). Acta Cryst. C46, 205-207.

Karaulov, S. (1993). SNOOP1. Molecular Plotting Program. University of Wales, Cardiff, Wales.
Lisgarten, J. N., Palmer, R. A., Hemmings, A. M. \& Gazi, D. M. (1990). Acta Cryst. C46, 396-399.

Rollett, J. S. (1965). Editor. Computing Methods in Crystallography, p. 22. Oxford: Pergamon.

Sheldrick, G. M. (1992). SHELXL92. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Taylor, J. F. (1940). J. Biol. Chem. 135, 569-575.
Zaleski, J. (1904). J. Physiol. Chem. 43, 11-17.

Acta Cryst. (1996). C52, 1180-1182

Tetramethylammonium Tris(thiobenzoato$O, S) \operatorname{tin}($ II)

Jagadese J. Vittal and Philip A. W. Dean*
Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7. E-mail: pawdean@julian.uwo.ca

(Received 23 October 1995; accepled 15 January 1996)

Abstract

The synthesis, structure and ${ }^{119} \mathrm{Sn}$ NMR spectrum of the title compound, $\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}\right)\left[\mathrm{Sn}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{OS}\right)_{3}\right]$, are reported. Crystallographic threefold symmetry is present in both the anion and cation. In the $\left[\mathrm{Sn}(\mathrm{SOCPh})_{3}\right]^{-}$anion, the $\mathrm{Sn}^{\mathrm{II}}$ coordination geometry is triangular pyramidal, with the S atoms forming the basal plane and the Sn atom at the apex; the $\mathrm{Sn}-\mathrm{S}$ distance is 2.592 (2) \AA. In addition, weak intramolecular interactions occur between the Sn atom and the carbonyl O atoms [$\mathrm{Sn} \cdots \mathrm{O} 2.967$ (2) \AA]. The ${ }^{119} \mathrm{Sn}$ NMR chemical shift of the title compound is -227 p.p.m. (MeCN, 295 K).

Comment

The chemistry of metal thiobenzoates has not been extensively investigated (Cras \& Willemse, 1987; McCormick, Beremon \& Baird, 1984). We have reported the structures of the thiobenzoate complexes of $\mathrm{Cd}^{\text {II }}$ (Vittal \& Dean, 1993), Pb^{11} and Billi (Burnett, Dean \& Vittal, 1993).
Reaction of $\mathrm{SnCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{NH}^{+} . \mathrm{SOCPh}^{-}$and $\mathrm{Me}_{4} \mathrm{NCl}$ in the ratio 1:3:1 afforded the title compound, (I), in low yield. The ${ }^{119} \mathrm{Sn}$ chemical shift is -227 p.p.m., the resonance being significantly more shielded than that of $\left[\mathrm{Sn}(\mathrm{SPh})_{3}\right]^{-}$, the chemical shift of which is 140-146 p.p.m. (Arsenault \& Dean, 1983; Dean, Vittal \& Payne, 1985). Thus, structural information about the $\left[\mathrm{Sn}(\mathrm{SOCPh})_{3}\right]^{-}$anion is highly desirable.

(I)

The structure determination of (I) shows it to consist of discrete anions and cations. Both the $\mathrm{Me}_{4} \mathrm{~N}^{+}$and $\left[\mathrm{Sn}(\mathrm{SOCPh})_{3}\right]^{-}$ions lie on a crystallographic threefold axis; a view of the anion is shown in Fig. 1. The three SOCPh^{-}ligands are bonded to Sn^{11} primarily through their S atoms. The coordination sphere around the Sn atom can be described as a trigonal pyramid with the three S atoms occupying the base $[\mathrm{S} \cdots \mathrm{S}$ distance 3.658 (3) $\AA]$ and the Sn atom at the apex. The geometry is consistent with the presence of a stereochemically active lone pair on Sn . The $\mathrm{Sn}-\mathrm{S}$ distance of 2.592 (2) \AA is longer than those of 2.532 (1)2.552 (1) A found for trigonal pyramidal $\left[\mathrm{Sn}(\mathrm{SPh})_{3}\right]^{-}$ (Dean, Vittal \& Payne, 1985). Weak coordination to the three carbonyl O atoms, however, also occurs in $\left[\mathrm{Sn}(\mathrm{SOCPh})_{3}\right]^{-}$; the $\mathrm{Sn} \cdots \mathrm{O}$ distance of 2.967 (2) \AA is less than the sum of the relevant van der Waals radii ($3.7 \AA$ § Bondi, 1964). The Sn atom is 1.64 (1) \AA from the S_{3} plane and 0.14 (1) \AA from the O_{3} plane. The dihedral angle between the SnSCO planes is 101.5 (2) ${ }^{\circ}$. In the PhCOS^{-}ligands, the COS planes are twisted from the phenyl ring planes by $18.5(2)^{\circ}$.

Fig. 1. A view of the $\left[\mathrm{Sn}(\mathrm{SOCPh})_{3}\right]^{-}$anion showing the labeling of the non-H atoms. Displacement ellipsoids are shown at the 50% probability level and H atoms are drawn as small circles of arbitrary radii.

The methyl groups of the $\mathrm{Me}_{4} \mathrm{~N}^{+}$cation are disordered. The two disorder models (occupancies of 0.6 and 0.4) are related by an inversion at N 1 along the $\mathrm{C} 8-\mathrm{N} 1$ axis. In the crystal lattice, each $\mathrm{Me}_{4} \mathrm{~N}^{+}$cation

[^0]: Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: JZ1107). Copies may be obtained through The Managing Editor, Intemational Union of Crystallography. 5 Abbey Square, Chester CHI 2HU, England.

